
Propositional Logic Review

Alan Fern, afern@eecs.oregonstate.edu

February 26, 2020

1 Propositional Logic Review

I will assume that you understand the basic concepts of propositional logic. However, we will begin 
with a quick review. If you have not studied propositional logic previously, I strongly recommend 
that you read Chapter 7 of Artificial Intelligence: A Modern Approach by Russell & Norvig.

There are two key components involved in defining any logic: syntax and semantics. The syntax 
specifies what strings constitute legal statements in the logic and the semantics provide a way for 
assigning a meaning to the legal strings. Whenever you are introduced to a new logic it is important 
to first gain a clear understanding of its syntax and semantics. We will go through these formalities 
for propositional logic as a simple illustrative example.

1.1 Syntax

The syntax of propositional logic is defined relative to a finite set of symbols X = {X1, . . . , Xn}. 
We will call these symbols propositions. A well formed formula (wff) of propositional logic is any 
string that can be constructed according to the following recursive rules:

• a single propositional symbol is a wff (e.g. X1),

• if φ1 and φ2 are wffs then so is any logical combination (involving ∧, ∨, or ⇒) of φ1 and φ2.
(e.g. X1 ⇒ X3),

• if φ is a wff then so is ¬φ, and

• if φ is wff then so is (φ)

No other strings besides the wffs are legal strings of propositional logic.

1.2 Semantics

In any logic, the semantics is defined by specifying the models of the logic and how to assign
meaning to the legal strings with respect to those models. Intuitively, each possible model can be
viewed as specifying a possible world within which a string (e.g. a wff) can be evaluated in. The
evaluation of a string in a model is often referred to as the interpretation of the string with respect
to the model. Thus, when learning about the semantics of a logic the key questions to ask are: 1)
What are the models?, and 2) How are strings interpreted in those models?

1



1.2.1 What are the models?

A model in propositional logic with respect to a set of propositions X = {X1, . . . , Xn} is simply
a truth assignments to the propositions in X. For example, if our set of propositions is {P,Q},
then a model might be 〈P = true, Q = true〉. Intuitively, if we think of the propositions as
representing boolean properties of worlds, then each model specifies the values of those properties
in that particular world.

1.2.2 Interpretations

Given a model M and a well formed formula φ, the interpretation (or meaning) of φ with respect
to M is either true or false, depending on whether φ evaluates to true or false under the truth
assignment dictated by M . One common notation used to denote the interpretation of φ under M
is φM (but other notational forms exist).

As an example, if we start with a well formed formula

φ = (BobIsRich⇒ BobHasNiceCar)

and a model for the propositions in those formulas

M1 = 〈BobIsRich = true,BobHasNiceCar = true〉

then
φM1 = true .

However, under the model

M2 = 〈BobIsRich = true,BobHasNiceCar = false〉

we have that
φM2 = false .

When it is the case that φM = true then we often say that φ is satisfied by M . If a formula is
satisfied by all models then we say that a formula is a valid formula or a tautology. For example,
X1 ∨ ¬X1 is valid. If no model satisfies a formula then we say that it is unsatisfiable. There are
formulas that are neither valid or unsatisfiable, i.e. they are true in some models and false in others
as in the above example.

1.3 Entailment

One reason we use logic is to determine when one formula necessarily follows from another, i.e. when
one formula entails another. In particular, if we think of a set of formulas as encoding our knowledge
of a world or system, then it is of interest to determine which other formulas (or statements) can be
soundly inferred from that knowledge. For example, in a logic that can encode number theory, we
might be interested in whether Fermat’s last theorem follows from formulas that “define” numbers.

Entailment : Given two formulas KB (for knowledge base) and φ we say that KB entails φ
denoted as KB |= φ iff for all models M , if KBM = true then φM = true.

2



That is, a formula φ is entailed by KB if it is true in all of the worlds or models in which KB is
true. Thus, if KB entails φ, then – as long as we are willing to believe that KB is true in “our
world of interest” – we should also believe that φ is true in that world. Here our world of interest
might be the wumpus world from your textbook, the world of natural numbers, a description of a
computer system, etc. Note that the notion of entailment is not tied in any way to a particular
logic. As long as we understand the models of a logic and how to interpret formulas as true or false,
the above definition of entailment is well defined.

As a simple example in propositional logic we have the following entailment relationship

P ∧ (P ⇒ Q) |= Q

. That is, Q must be true in any world where both P is true and “P implies Q” is true.

1.4 Deductive Inference

Remember that entailment is strictly a semantic concept. In AI and computer science we are
interested in computing when an entailment relationship is true and also computing the entailed
formulas of a given KB. Such computation is often called deductive inference.

A common approach to deductive inference is to combine a set of logical inference rules with a
search procedure. An example of a logical inference rule is

P, P ⇒ Q

Q

which means that if our current KB contains the formulas P and P ⇒ Q we can add the formula
Q to the KB. We require that inference rules be sound; in other words, they should only add
formulas that are entailed by the KB. Given a set of inference rules, we can cast deductive inference
as a search problem, where we start with KB and search through sequences of rule applications
until either deriving the target formula (i.e. the query) or some stopping condition is met (e.g.
total running time).

When such a procedure discovers a sequence of rule applications that derive the formula φ from
KB we say that the procedure has found a proof of φ from KB. We often use the notation

KB ` φ

to denote that our procedure can prove φ from KB.
Note that inference and proof are purely syntactic concepts. Deductive inference procedures

merely apply syntactic transformations to strings without regard to the meaning of the strings. Of
course, we do want there to be a link between the syntactic notion of proof and the semantic notion
of entailment. This link is formalized via the notions of soundness and completeness.

Soundness An inference algorithm is sound iff whenever KB ` φ then KB |= φ.
That is, the algorithm only proves semantically entailed formulas.

Completeness An inference algorithm is complete iff whenever KB |= φ then KB ` φ.
That is, the algorithm is able to prove all entailed formulas of a knowledge base.

So long as our inference rules are sound, the above search based inference approach will be sound.
Completeness is a more difficult issue. In order to achieve completeness we must use a complete

3



search procedure, and in addition ensure that our inference rules are rich enough to prove any
entailed sentence — i.e. whenever KB |= φ there should be a sequence of rules starting with KB
that result in φ.

For propositional logic there are sound and complete sets of inference rules. In practice, and in
this course, however, we will be content with a restricted notion of completeness, that allows us to
get by with simpler rule sets. This is known as refutation completeness, as we now discuss.

1.5 Refutation Completeness

It is easy to show that whenever KB |= φ that the formula KB ∧ ¬φ is unsatisfiable. That is, by
the definition of entailment there are no models that satisfy KB and the negation of φ. Thus, we
can reduce the problem of testing entailment to testing unsatisfiability. An inference procedure is
said to be refutation complete if it can decide the unsatisfiability of any given formula. Given a
refutation complete inference procedure, it is possible to test any entailment query; however, such
procedures do not necessarily need to be able to enumerate all consequences of KB, as is required
by the more strict requirement of completeness.

For propositional logic there are many algorithms for deciding (un)satisfiability, including brute-
force truth-table enumerations. Any such procedure provides us with a refutation complete inference
procedure for propositional logic.

Of particular importance is the resolution inference procedure for testing satisfiability. As
described in your text the generic resolution inference procedure combines a single inference rule
(called resolution) with a complete search. This procedure is guaranteed to discover a contradiction,
i.e. discover a sequence of resolution rule applications that “prove false”, whenever the original
formula is unsatisfiable.

In upcoming lectures we will generalize the resolution inference procedure to handle first-order
logic. Thus, it would be a good idea to review resolution for propositional logic as covered in
Chapter 7 of your book.

1.6 Complexity

For unrestricted propositional logic, deductive inference is NP-complete. That is to say that it is
widely believed that there is no efficient algorithm. In order to obtain polynomial time inference
we must sacrifice completeness. One way to do this is by restricting attention to a subclass of
propositional formulas (e.g. Horn theories as will be discussed in upcoming lectures). Managing
the trade-off between completeness and efficiency is one of the fundamental dilemmas when applying
logical reasoning.

4


	Propositional Logic Review
	Syntax
	Semantics
	What are the models?
	Interpretations

	Entailment
	Deductive Inference
	Refutation Completeness
	Complexity


